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The survival probability of immobile targets annihilated by a population of random walkers on inhomoge-
neous discrete structures, such as disordered solids, glasses, fractals, polymer networks, and gels, is analyti-
cally investigated. It is shown that, while it cannot in general be related to the number of distinct visited points
as in the case of homogeneous lattices, in the case of bounded coordination numbers its asymptotic behavior

at large times can still be expressed in terms of the spectral dimension d˜ and its exact analytical expression is
given. The results show that the asymptotic survival probability is site-independent of recurrent structures

�d̃�2�, while on transient structures �d̃�2� it can strongly depend on the target position, and such dependence
is explicitly calculated.
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The kinetics of diffusion limited reactions is deeply af-
fected by geometry and topology, and their description in
terms of random walks models is a very powerful tool to
explore such dependence �1,2�. In some cases, especially on
regular lattices, it is possible to establish simple analytical
relations between survival probabilities of chemical species
and basic random walks functions, making explicit the de-
pendence on universal geometrical parameters such as spatial
dimension. The case of irregular structures is more complex
due to the absence of symmetries allowing for a reduction in
the degrees of freedom involved in analytical calculations.
Therefore, in general, it is not possible to relate time decays
and survival probabilities to simple geometrical parameters
characterizing the underlying structures.

In this Rapid Communication, we face a well-known kind
of reaction, namely, the A+B→B process, where the A spe-
cies is immobile, which is known as the target reaction �A is
called the target� �3�. This target reaction model is usually
introduced to describe a variety of physical, chemical, and
biochemical processes, such as the Williams-Watts dielectric
relaxation in polymers and glasses �4� as well as the poison-
ing of surface catalysts and of immobilized enzymes �5�.
Such a target decay problem has been extensively studied
analytically since it admits exact solutions on homogeneous
structures, i.e., on structures where all sites are topologically
equivalent �3,6�. In these cases, it can be shown that the
target survival probability decays as a negative exponential
of S�t�, the mean number of distinct sites visited by a random
walk after time t. The case of inhomogeneous structures has
been recently investigated for some particular networks,
namely, small world networks �SWN� �7� and scale free net-
works �SFN� �8�, showing that this simple dependence on
S�t� no longer holds and that the deviations from such a
behavior are particularly evident at large times. These net-
works, besides being inhomogeneous, exhibit a peculiar fea-
ture: the coordination numbers are not bounded from above
in the thermodynamic limit: in other words the maximum
coordination number diverges for N→�, N being the num-
ber of sites.

Many interesting real inhomogeneous system, however,
do not present such a property and the maximum coordina-
tion number is finite even for N→�: this is the case, for

example, of disordered solids, glasses, fractals, polymer net-
works, and gels. All these structures can be mathematically
described in terms of “physical graphs,” and the applications
of ideas and techniques of algebraic graph theory allow us to
obtain analytical results in spite of the lack of invariance and
symmetry �9�. In the following we present the mathematical
formulation of the target decay problem on physical graphs,
and we obtain an exact analytical expression for the target
survival probability at large times, showing that it can be
expressed as a negative exponential of t for transient graphs

and of td̃/2 for recurrent graphs, d̃ being the graph spectral
dimension.

Let us begin with some basic definitions �9�: a graph G is
a countable set V of vertices �or sites� �i� connected pairwise
by a set E of unoriented links �or bonds� �i , j�= �j , i�.

The graph topology can be algebraically represented in-
troducing its adjacency matrix Aij given by

Aij = �1 if �i, j� � E

0 if �i, j� � E
� �1�

and the coordination number of site i, which is the number of
nearest neighbors of i, is given by zi=� j Aij.

The discrete time simple random walk on a graph G is
defined by assuming that at each time step t the walker can
only jump to a nearest-neighbor site and that all nearest-
neighbor sites can be reached with the same probability.
Therefore, we can define the jumping probabilities pij be-
tween sites i and j by

pij =
Aij

zi
= �Z−1A�ij , �2�

where Zij =zi�ij.
Now we introduce the functions Pij�t�, each representing

the probability of being in site j at time t for a walker starting
from site i at time 0, and the first passage probabilities Fij�t�,
each representing, for j� i, the conditional probability for a
walker starting from i of reaching for the first time the site j
in t steps and, for i= j, the probability of returning to the
starting point i for the first time after t steps �Fii�0�=0�.
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The fundamental relation between the Pij�t� and the Fij�t�
is given by

Pij�t� = �
�=0

t

Fij���Pjj�t − �� + �ij�t0. �3�

Introducing the generating functions P̃ij��� and F̃ij��� by
the definition

f̃��� = �
t=0

�

�t f�t� �4�

from Eq. �3�, we obtain the simpler relation

P̃ij��� = F̃ij���P̃jj��� + �ij , �5�

which will be useful in the proof of our main results.
On infinite graphs, representing real systems in the

thermodynamic limit, Pii�t� vanishes for t→�. If the
graph can be embedded in a finite-dimensional Euclidean
space and if the coordination numbers are bounded, i.e.,
if ∃ zmax �zi�zmax ∀ i�V, then Pii�t� vanishes typically as a
power law, whose exponent allows us to define the so-called

�local� spectral dimension d̃, which is the natural generaliza-
tion of the Euclidean dimension for dynamical processes �9�:

Pii�t� 	 pit
−d̃/2 for t → � ∀ i � G , �6�

with d̃	1, where pi
 p0 zi �i.e., it depends only on the co-

ordination number of i� if d̃�2. For d̃�2, F̃ij�1�=1, i.e., the
probability of ever reaching any site starting from any site is

1, and the graph is called recurrent. For d̃�2, F̃ij�1�
1, and
the graph is called transient.

Now we can define the target decay problem on an infinite
graph, following the formalism introduced in �7�. Since each
target decays independently of the other ones, we can study
the decay of a single target without loss of generality. Let us
suppose a target molecule A is placed at site k, while, at time
t=0, the B molecules are randomly and independently dis-
tributed over the other sites, with average site occupation
number q. The occupation number distribution at each sites
turns out to be Poissonian, and the probability p�n� of finding
exactly n B molecules at a given site is p�n�=qne−q /n!. For
t�0, the B molecules are moving randomly and indepen-
dently according to the jumping probabilities �Eq. �2��, and
the target A is annihilated when it is reached by one of them.
Under these hypotheses, it has been shown �7� that the sur-
vival probability �k�t� of target A at time t is given by

�k�t� = e−q�k�t�, �7�

where

�k�t� = �
i�k

�
�=0

t

Fik��� . �8�

Now, on homogeneous graphs, Fik�t�=Fki�t�, and due to
this symmetry, �k�t�=S�t�−1, where S�t� is the number of
distinct sites visited by a walker after t steps �on homoge-
neous graphs it is independent of the starting site k�. This
result gives rise to the well-known results obtained on

d-dimensional Euclidean lattices, where for t→�,
�k�t�	�t for d=1, �k�t�	 t / ln t for d=2, and �k�t�	 t for
d	3 �3�.

On inhomogeneous graphs, Fik�t��Fki�t�, and the simple
relation mentioned above no longer holds, giving rise to a
more complex behavior �7�.

Let us proceed to the calculation of the asymptotic behav-
ior of �k�t� by introducing its generating function:

�̃k��� = �
t=0

�

�t�k�t� =
1

1 − �
�
i�k

F̃ik��� . �9�

From Eq. �3�, for i�k, we get �9�

F̃ik��� =
P̃ik���

P̃kk���
=

zk

zi

P̃ki���

P̃kk���
, �10�

therefore

zk

zmax

P̃ki���

P̃kk���
� F̃ik��� �

zk

zmin

P̃ki���

P̃kk���
, �11�

where zmin	1 is the minimum coordination number.
Moreover, since �i Pki�t�=1 for every t, we have that

�i�k P̃ki���= �1−��−1− P̃kk���. Therefore

zk

zmax
� 1

�1 − ��2P̃kk���
−

1

1 − �
� �̃k��� �

zk

zmin
� 1

�1 − ��2P̃kk���
−

1

1 − � . �12�

Now we can proceed to the singularity analysis of �̃k���
in order to obtain the asymptotic behavior of �k�t� by apply-
ing Tauberian theorems �10�.

From Eq. �6�, we have

P̃kk��� →
�→1−�p0zk�1 −

d̃

2
�1 − ���d̃/2�−1 for d̃ 
 2

p0zk log�1 − ��−1 for d̃ = 2

P̃kk�1� for d̃ � 2,
�
�13�

therefore, from Eq. �12�,

�̃k��� →
�→1−�

1

z̄kp0�1 − d̃
2�

1

�1 − ���d̃/2�+1 for d̃ 
 2

1

z̄kp0

1

�1 − ��2log�1 − ��−1 for d̃ = 2

zk

z̄kP̃kk�1�

1

�1 − ��2 for d̃ � 2,
�

�14�

where 1 / z̄k
 lim�→1−�1−���iP̃ki���1 /zi=lim�→1−�iP̃ki���1 /
zi /�iP̃ki���, with zmin� z̄k�zmax, is the weighted average of

the inverse coordination numbers 1 /zi, with weights P̃ki���
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for �→1−. Notice that the hypothesis of boundedness of zi
could be replaced with the weaker condition z̄k
�, leaving
our results unchanged. On recurrent graphs, since

lim�→1−P̃ki��� / P̃hi���=1, uniformly in i, z̄k turns out to be
site independent: z̄k= z̄. The singularities in �=1 in Eq. �14�
finally give us the following asymptotic behaviors:

�k�t� →
t→��

sin��
d̃
2�

z̄p0�
d̃
2

td̃/2 for d̃ 
 2

1

z̄p0

t

log t
for d̃ = 2

zk

z̄kP̃kk�1�
t for d̃ � 2.

� �15�

These results deserve some comments. First of all notice
that, if the graph is homogeneous, we exactly recover the
usual asymptotic form of S�t�: this happens not only for Eu-
clidean lattices �3� but also for regular ultrametric spaces �6�
and for Bethe lattices, for which the spectral dimension turns
out to be infinite �11�. In other cases, such as fractal struc-
tures, even if �k�t� is different from Sk�t�, it turns out to have
the same t dependence for t→�.

For completeness sake, we notice that, in some particular
cases, it is possible to have logarithmic corrections to the
asymptotic behavior described by Eq. �6� �12�: these correc-
tions give rise to logarithmic corrections in Eq. �15� too,
which are rather simple to calculate; we have neglected them
only for simplicity’s sake.

Moreover, for recurrent graphs, the asymptotic behavior
of �k�t� is site independent ��k�t�→��t�� even if the struc-
ture is inhomogeneous and the sites are not equivalent. This
means that, in spite of inhomogeneity, the recurrent nature of
the structure gives rise to asymptotic survival probabilities

which are independent of the target position: this is the case,
e.g., of many deterministic fractals such as the Sierpinski
gasket and the T-fractal �9� and also of recurrent random
graphs generated with the constraint of bounded coordination
number �13�.

On the other hand, when the graph is transient, �k�t� and
�k�t� are site dependent even for t→�. Such dependence
that only concerns the coefficient of the power of t, while the
exponent is the same for all sites, is rather intriguing. Indeed,
it is a peculiar feature of inhomogeneous transient graphs. In
fact, only on these structures the probability f i of ever reach-
ing site i, averaged over all possible starting sites, can de-
pend on i. In other words, there can exist sites which are
more likely to be visited than others even at large times and
such a property gives rise to the asymptotic site dependence
of �i�t�.

From the point of view of the applications, the site depen-
dence is quite interesting since it means that the target posi-
tion can affect its survival probabilities at large times, and in
some cases, it is possible to know which sites are more likely

to survive �notice that P̃kk�1� is the average number of visits
to k for a walker starting from k itself�. It is particularly
noteworthy the case of the so-called recurrent on the average
transient graphs �14�, such as, e.g., NTD �“nice trees of di-

mension D”� �15�, where P̃kk�1� is always finite but un-
bounded from above, i.e., for every r�R, it exists some k

such that P̃kk�1��r. In the case of the NTD, which are trees

with branches of unbounded length, P̃kk�1� is greater for
points lying in longer branches: therefore a target placed in
such sites has a greater asymptotic survival probability.

The detailed investigation of these aspects is fundamental
to design optimal reaction strategies based on geometry, as
well as to understand target decay processes in complex bio-
logical systems �16�.
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